Author Archives: sybefur

About sybefur

retired engineer (computer, steam, racing etc.)

Providing some Direction – Befur gains a rudder

Rudder ready for fitting and varnish

The rudder with pintles ready for varnish and fitting

One of the major outstanding jobs on the hull was to build a suitable rudder. As Befur is meant to sail (as well as steam) we wanted to make sure we provided some thing effective.

Researching the subject covering everything from historic articles on Chinese Junk development to the Steamboat Associations’ handbook and designers from Selway Fisher to Dave Gerr’s excellent book on ship design and lots of trawling of the Junk Rig Association’s web site we discovered some important facts:

  • Traditional Junks had “rudders the size of barn doors” – so delicate little daggers seemed inappropriate.
  • Aerofoil profiles work best – the NACA profiles are well documented.
  • A balanced rudder would reduce the requirement for Charles Atlas courses for the helmsperson.

Balance and Profile choices

Balance: The idea of balance is that the rudder is built with part of the blade ahead of the rudder-stock, so as it is turned some of the force of the water helps with the turning, off-setting the tendency of the rudder to want to return to the straight-ahead position. This reduces the effort needed to steer the boat.

Clearly, there is an upper limit to the amount of balance included in the design, or the rudder will continually try to swing into “full lock”. Reading up we concluded we would aim for 20% of the rudder surface area to be ahead of the rudder stock. We failed to recognise that of course the actual pivot-point of the rudder is not in the centre of the rudder-stock but on the centre line of the “hinges”/pintles.

So our actual balance is somewhat less than this intended 20%, so we will see. in time. if Befur is easy to handle. Of course handing is likely to vary considerably between steam and sail, so it’s probably going to be a compromise.

We will initially just fit a simple tiller to control the rudder, but the plan is to also install hydraulic wheel steering, as it will not be possible to control the engine and reach the tiller from the same seat – so some “drama” will probably ensue as we attempt to pick up a buoy or dock.

Profile: While a flat plate rudder will work, they produce more drag and deliver less “turning moment”. The better plan is to make the profile of the rudder an Aerofoil (Aquafoil?) shape. This causes the rudder to produce sideways “lift” helping to pull the stern around.

It emerges that standard aircraft aerofoil sections are appropriate, and the most well known are the NACA profiles developed by the American National Advisory Committee for Aeronautics. This is because water and air can both be considered “fluids” (Hence all the work on Fluid Dynamics in Formula 1 car design).

These profiles are identified by 4 digit codes, the first two numbers indicating the “camber”  of the section and the second two numbers indicating how “thick” the profile is. As the rudder needs to provide “lift” in both directions (port and starboard) the camber is zero producing a profile that is symmetric about its centre line.

The “thickness” of the profile determines a) how much lift the rudder will produce for a given speed through the water (larger profile = bigger lift) and b) how much the rudder can be swung left and right before it stalls and the lift is lost.

Clearly this is also a compromise – but we settled on a NACA0015 profile – this meaning that the thickest part of the profile is 15% of the length (chord) of the rudder. Again, time will tell how good this decision was.

Manufacture

An old friend Nick Pilbeam from Aberdeen volunteered to come and assist in the manufacture – thank-you Nick.

We adapted the design to take advantage of the contents of my boat-building timber store. I have become a considerable fan of epoxy-composite structures and of laminated timber designs, so we started with a rudder stock of 75mm square Iroko and a blade core of 25mm thick plywood.

These were jointed via a “cross-halving” joint (with the blade inserted into a slot cut in the rudder-stock. This was then built up with lamination of Iroko and Douglas Fir.

The whole rudder was to be wrapped in epoxy-soaked glass cloth (in the same way as the hull is built), but this time finished in the clear (with varnish to protect the epoxy from the Sun’s UV radiation). This approach means that at least a small part of the boat will look like the wooden boat that it is!

Having laminated the components together with thickened epoxy, we then undertook the initial profiling with a router running on a pair of slides which had been cut to match a set of co-ordinates computed using this rather helpful web page.

In practice (after having repeatedly struggled (and failed) to correctly copy the measurements from the spreadsheet to the template) we concluded that it was not possible to accurately route the leading edge portion of the aerofoil from the template. This was because the rate of change of thickness is so fast at the leading edge, and as you need to keep the router normal to the template to get the correct profile, it was very easy to make a BIG mistake.

So we settled on making another template for the leading edge and using the trusty power plane and belt sander to profile the leading edge of the blank 🙂

Some pictures:

Advertisements

A Plumber’s Nightmare & a Real McCoy

Over the last few days we have encountered the two items mentioned in the title in real life, in a slightly stressful way.

The Real McCoy

One of Elijah McCoy's displacement lubricators - actually this one was made by the Detroit Lubricator Company.

One of Elijah McCoy’s displacement lubricators – actually this one was made by the Detroit Lubricator Company.

While Wikipedia suggests two origins for the phrase “The Real McCoy”, the most well documented version relates to one of the brass beauties shown here.

It is a displacement lubricator patented by one of Elijah McCoy’ in the 1870s in America.  These devices perform a simple, but vital, role of providing internal lubrication for steam engine cylinders and valve gear, but they do it using an apparently impossible process.

Basically they are attached to a ‘T’ in the steam line supplying the engine. You fill the lubricator with oil, and then via a mechanism which is not at all intuitive, the steam in the steam line to the engine decides it would prefer to be in the lubricator and, as it migrates that way and condenses as it cools, displaces the oil which is forced back into the steam line. So the connection to the engine sees steam heading one way and oil heading the other with nothing obvious causing that to happen!! The lubricator has a number of valves to control the rate that this happens and allow the machine to be shut off and refilled while underway.

Apparently Elijah McCoy’s  lubricators were so good and reliable that companies wishing to purchase steam locomotives were given to checking that it was fitted with a “Real McCoy Lubricator” – hence the phrase 🙂

In my case I purchased this at an auction a few years ago, and prior to fitting it I needed to pressure test this (as with all other pressurised components). As I did this, it revealed a number of leaks and failed seals on the two sight glasses.

Taking it apart revealed seals that may once have been rubber, but in the intervening years (100+?) had turned into something more like wood. I managed to find some replacement ones that just needed shortening, but fitting these is a tense process as cracking the glass would be just too easy.

Anyway, we managed it, and with a little TLC and returning some of the needle valves, we had the Real McCoy: a leak-less displacement lubricator.

The Plumber’s Nightmare

The fwd boiler fittings almost complete.

The fwd boiler fittings almost complete.

The rest of the week has been consumed by attempting to fit the fittings to the forward end of the boiler.

This seemed as though it would be a simple process, but pushed me to the edge of serious depression.

Due to the temperature and pressure of this assembly (250psi and 200+ degrees Centigrade) all of this needs to be in steel pipe with screwed fittings.

The problem is that while one can imagine how it all goes together, the reality is more complex, principally because you can’t actually screw all the parts together as the end points are fixed and so you can’t tighten everything.

Moreover it appears to need a certain sort of brain/thinking to figure this out – my respect for plumbers has been raised considerably! This was born out by half an hour in Penrith at the sales desk of a pipeline and hydraulic supplier while the staff demonstrated considerable fortitude (and difficulty) in “rummaging” through their stock to find the combination of bits we needed. (Actually I found this quite encouraging – if they couldn’t sort it out, perhaps I was not being a complete klutz.)

The net of this story is that what you need are “cone unions” – and I think the ones provided by Bessegers (like these) are by far the best design. These allow you to assemble the screwed bits, and then attach the assembly to the component you are plumbing without needing to move the joints you have made.

The second take away, is that sometimes you need to opt for an indirect path for the piping to allow you to accommodate the offsets in all three dimensions.

Onwards!

Boiler Gauge Glass and Boiler Fittings

Boiler Gauge Glass

Finished Gauge Glass

Finished Gauge Glass

We decided to make the sight glass for the boiler following John King’s design, with slight modifications. Ian Cross of the SBA was very helpful and modified some existing patterns he had for “normal” reflex gauge glasses to suite rear-entry installations, and had 3 sets of these cast for our “boiler making syndicate”.

As it happened he made the castings with larger/longer mounting “lugs” so I decided to try to make the gauge with the cocks integrated into the body (as opposed to separate valves as drawn by John). This was a quite stressful decision as the cocks are not easy to make, and any errors result in a scrapped casting, but none-the-less I am quite pleased with the result.

The design is unusual as the lower cock is made as a three-way cock to allow the two cocks to be set for normal operation, isolation of the glass (in the event of failure of the glass) and to allow blow-down of the glass and drum – a neat and innovative solution.

Manufacture

The manufacture was quite simple:

    • The flat faces of the casting were all faced on the shaper (using stop-pins) to hold it to the shaper table. This approach allows the complete faces to be machined in one pass.
  • Milling the Glass Recess

    Milling the Glass Recess

    The body and cover castings were then attached to the mill table and the recesses were cut for the glass (a B2 Klinger Reflex Glass from Heritage Steam Supplies).

  • At the same time the holes (ports) to connect the drum to the gauge glass space were drilled. This required some careful measurement as I made my usual mistake of not really understanding how the gauge fitted into the casting (it’s a bit like the sculptor finding the subject hidden in the stone) and so had not realised that the pre-cast slot for the glass was not actually arranged to be at the longitudinal centre of the casting – so the ports to the glass slot had to be offset from the threaded holes for mounting the gauge. As all these holes had to also mate with the taper cocks taper part it needed to be done carefully.
  • The next process was to drill and bore the holes for the taper cocks. Firstly, the cocks themselves have to be turned with the correct taper – the important thing is that the cocks and the holes are turned at exactly the same setting, so one sets the top-slide to the 10-degree angle and then locked in place while both parts are made. Here are some pictures of the parts and video of setting up for the the boring using a sharpened rod (located in a dot-punched mark at the centre and a closed up tailstock chuck, which provides a female centre point) and dial gauge to get the casting correctly positioned on the face-plate. This is a very off-set operation so large amounts of junk have to be bolted to the face-plate to attempt to balance everything.
  • Boring the drain port

    Boring the drain port

    The last operation is to drill and centre-bore the drain hole from the bottom of the casting to the taper-cock bore. This needed to be accurate, so I drew it up in ViaCad to ensure I had accurate dimensions and angles. Then a digital angle gauge allowed the head on the Rambaudi Mill to be set over to drill the hole (rather a “tall” set-up).

  • The final assembly showed that the handles on the cocks clashed with the dome nuts on the steam drum ends, this could probably have been avoided by shortening the shafts of the cocks, but this would have required bent handles (as described in the drawings) but I did not have any suitable material. So I made two spacers to lift the gauge clear of the end-plate. these have o-rings installed on both sides to seal the assembly.

Boiler Fittings

The next stage of the process is to attach all the boiler fittings and then assemble the steam/exhaust/feed-water components to the engine so that we can complete the boiler test and check everything operates before installing into the boat.

plumbing diagram

plumbing diagram

plumbing Bill of Materials

plumbing Bill of Materials

En-route I drew up a plan for this to choose the appropriate fittings and a bill of materials to match.

This single sentence hides many hundreds of pounds of components and hours of hand-wringing and frustration!

PTFE – one lesson that has been learnt is that PTFE seals in clacks and valves will not work at 250psi, as their maximum operating temperature is about 190C  (saturated steam at 250psi is at 207C or 406F) and at that pressure the operating pressure limit is very low – so PN32 valves are no-go and PN40 or above is what is required. (So I have quite a stock of ball and globe valves which are going to need to go to eBay 😦 ).

Here are a couple of pictures showing the current state of play…

Boiler Fitting in progress

Boiler Fitting in progress

Boiler Fitting in progress

Boiler Fitting in progress

 

All Pumped up!

Well a definite milestone was reached today; the boiler passed its official initial hydraulic test at 500psi conducted by our Boiler Inspector.

It will never need to be pressed that hard again, next we have a 375psi test with all the ancillaries fitted (gauges, valves, plumbing etc.) then we put some fire in its belly and prove that the safety valves will stop the pressure going more than 10% higher than its 250psi operating pressure – then we will be allowed to insure it and use it in anger!!!

This might seem like a bit of a palaver, but a boiler failure will typically kill everyone within many feet – so it pays to take care.

When you consider that the pressure trying to force each end cover off during the test is equivalent to a large African Elephant standing on it, you can see why it uses a bunch of M16 and M20 studs to hold everything together!

Boiler sitting at test pressure.

500psi on the clock

500psi on the clock

A Few Notes

It took three attempts to get everything perfect, and here are a few notes for other builders:

  • The dome nuts needed to be skimmed, as the imperfections in their surface were enough to produce a significant shower at 200psi as they prevented the dowty seals from working.
  • One of the tubes had not been expanded into the mud drum – that started leaking without any pressure!
  • The stays on the steam drum needed shortening by about 200-thou to stop them bottoming in the dome nuts (it’s a bit of a fiddly dimension, as you must ensure enough thread is engaged with the nuts even with one end completely screwed up to the limit.)
  • The upper end of some of the tubes were a bit long and clashed with the lower stays in the steam drum, resulting in an hour or so with a Dremmel and air-driven countersink, to provide the necessary clearance.

Either way, an important day on the route to launch day!

Boiler Insulation and Funnel

Just a quick note on recent days’ work. We have been insulating the inner boiler casing and installing the funnel (at a jaunty angle)!

The boiler has two casings- one surrounding the burner, tubes etc. (the hot stuff) and an outer one of wood, with an air-gap in-between to keep passengers safe. This also includes a double skinned chimney (also to keep people safe – Lou has quite a scar from another steamboat where the funnel was not lagged or double skinned).

We are using “ceramic fibre board” from Vitcas This is quite expensive, but robust, capable of standing 2,300F (1,250C)  and capable of being cut with a knife or jig saw.

However, the mental gymnastics required to think about how it all fits together inside the boiler I find quite hard. However, after a deal of cutting and trial and error it’s almost done.

Tube nest

As we needed to remove the casing, I also took some pictures of the “tube nest” which shows the 200+ 12mm tubes all expanded into the steam and mud drums.

This lot totals about 30sq-ft of heating surface which is capable of producing about 300lbs of steam at 250psi per hour!

Funnel

This is formed from some 7-inch stainless steel liner and enamel outer flue. This is what you would find attached to your average AGA.

Boat aesthetics required that this is attached at a jaunty angle (5-degrees) to provide an impression of dashing speed etc. However, making things at an angle is often more difficult than making things straight.

We have made the casing from 3mm steel and this has provided a solid foundation for mounting the funnel.

The inner liner is  178mm dia, so I bored out the hole in the top plate of the casing to size with the head of the mill set over 5-deg to get the required oval (a bit OTT I think).

I opted for a set of 20mm square blocks with their base machined to the aforementioned 5-degree angle and then M5 screws are used to attach these to the roof of the boiler casing to provide a “socket” for the liner.. The inner liner also has a “bulge” about 15mm above it’s lower end, so I machined notches in these blocks to engage with this bulge and thus provide vertical (or jaunty angle) support to.

The outer face of these blocks was then machined to fit the outer funnel, again with the steps providing the angled support. M5 screws thru the outer into these blocks secure the outer funnel. Lastly, a set of three blocks were made to secure the inner and outer funnel together at the upper end, and then an air-nibbler used to chop the inner to length.

Milling at 5-degrees

Milling machine set over to machine oval hole in cover, and inner funnel resting in said hole at required “jaunty” angle!

Funnel mounted on Boiler Cover

Funnel mounted on Boiler Cover

Mid 2017 Update

Progress since April

Well, it seems like high time I provided an update, as the last one was in April!

At some level it feels like not much has been achieved, but that’s because a lot of the work has been “bitty”, finishing up jobs and tidying up items that had been hanging around for a while – and then there was the distraction of needing to design/build a new garden shed (the last one literally blew down – the joys of living 900ft up in the Pennines!).

So here is a list of the items I can recall completing….

  • Finishing the inner Boiler casing – next job is to “lag” the inside with ceramic board insulation
  • Making a manifold for the feed clacks – basically milling and turning off about 80% of a steel block.
  • Remaking the battery pack for the VHF transceiver – no replacements available.
  • Testing the antique Sailor VHF radio – (using the aforementioned transceiver)
  • Rebuilding and modifying the lubricator pump and plumbing to fix leaks – (correction; most leaks!)
  • Making a sump/oil tray for the engine – expensively made from spare 3mm brass sheet!!!
  • Repainting the condenser – maximum Nitromors, but looks better.
  • Finishing steam re-heater  – making unions, and lagging in “broken bone” plaster bandage.
  • Plumbing in the condenser steam and cooling water circuits – lots of cursing, custom unions and silver soldering.
  • Fixing the pump/alternator assembly to sump – decided the floating design was no good.
  • Craning the engine and boiler around ready for testing.
  • Spent a fine day on Grayling on Windermere – we all need a break sometimes!

Next Steps

  • I think the engine is now effectively ready to install into the boat, but we are going to bench test the whole shbang before we do this.
  • Strip the boiler casing and fit the insulation.
  • Mount inner and outer funnel onto boiler.
  • Screw cut the M20 and M16 stays for the boiler (thanks John for loan of larger lathe).
  • Make water gauge – modified castings arrived (thanks to Ian Cross for the pattern making).
  • Assemble and pressure test the boiler!!!!!!

I have assembled a slideshow of photos to record some of the above items, rather than post them all individually – enjoy!

 

Finishing the Superheaters & Boiler Casing

Work on the Boiler continues with the finishing and installing of the Economiser (pre-heats the incoming water to the boiler using waste heat from just before the flue) and the Superheater (adds energy to the steam on the way to the engine, again using waste heat from the flue gasses.

Milling and Drilling the Econo/Superheater Headers

As noted in the last post, I decided to mill the recesses in the two halves of the headers, as there is a lot of metal to shift, and with the “ripping” milling cutters this was by far quicker. (some pics)….

Milling Recesses in Headers

Milling Recesses

O-ring milling set up

O-ring milling set up

Some finished headers

Some finished headers

 

 

 

 

Tapping Machine 😦

As there were such a lot of M8 holes to tap (about 48 per boiler) I thought I would “invest” in a tapping head for the mill, and went for a cheap Chinese one – and you certainly get what you pay for… I was worried when it arrived as it appeared to not have a load-sensitive clutch, so decided to try it gently on a test piece… the pictures show how that worked out…

The £^*kin Tapping Head

The £^*kin Tapping Head

Machine Tapping in Action

Machine Tapping in Action

I can imagine it would have been OK with tapping thru holes, but even being as careful and slow as I could, it was useless on a blind hole -sheering the tap instantly. I was just very happy that I snapped the tap in a test piece, and did not scrap a header that I had spent some time (and money) on making… So it’s back to standard/hand mode… and we have a full set…

Back to the old method

Back to the old method

Some finished headers

Some finished headers

Cutting the O-ring Grooves

The final job on the headers is to cut the 4.5mm wide groves for the o-rings that seal the joint between the two halves. I was a little nervous about cutting these in the lathe, as you need to produce a narrow tool with additional clearance to avoid the outer edge of the groove as it is cut.

O-ring milling set up

O-ring milling set up

So, again I decided to mill these, using a small slot drill and the rotary table. This did work, but was slow and tool wear was a problem – I might revert to lathe cutting these for the drum ends.  The setup for milling the grooves was to fit new clamps in the recess before removing the clamps on the rotary table that were holding the header while recess milling (see pic). This meant we knew that the part was still centred on the rotary table, ensuring the recess and o-ring groove were concentric.

With all this complete we just needed to fit the tubes with the same expanding process as used on the main drums.

Boiler Casing

You will recall I drew the parts for the inner casing of the boiler in ViaCAD and then had them plasma cut directly from the drawing; this meant assembly was quite simple. I used M5 rivnuts and screws to make the assembly, spotting through from the plasma cut holes to locate the rivnuts. This went well. I also purchased an American design of tool for fitting the rivnuts, this is based on a pair of wedges which produce the compression to expand the rivnuts. The more normal “pop-rivet” style of tool requires bigger hands and forearm muscles that I currently own!

Completed Inner Casing

Completed Inner Casing

Starting the casing

Starting the casing

Pressure test

The last job is to pressure test the assembly, as the boiler is rated to 250psi, the hydraulic test (with the assembly full of water to avoid any large bangs!) is 500psi. Once we located the one tube we failed to expand (light shower ensues) the assembly proved pressure-tight – which is more than could be said for the plugs and pump, which took several hours of work to fettle to a point where they would stand the pressure. (In the process I became a complete fan of Dowty Seals, which rendered the plugs in the headers pressure-tight with little more than finger pressure inserting the plugs. Here is a video of one of the completed assemblies under pressure (before I cured the leaking pump!!).

Not a bad months work in total…