Tag Archives: leak compound steam

Tube Expanding and Economiser Headers

Just an update on progress with the boiler and other (interrupting) activities.

Tube Expanding

Nigel was good enough to make the trip north and assist with the tubing of the first boiler.

This was actually a simple, if repetitive, job.

Fitting the tubes

We firstly supported the three drums in the casing end plates, which were temporarily joined with lengths of timber. When fitting the tubes the game plan is to first locate the “centre” row of straight tubes, then fit the outer rows.

In practice there is not enough clearance to insert the first end of the tube with the drums in their correct orientation, so one firstly turns one of the drums in the casing to allow one end of each of the first row of tubes to be slid into this drum, and then the drum can be rotated back to its correct orientation and the free end of the tube inserted into the other drum.   (Hint: Insert them into the mud drum first, we actually started by inserting them into the steam drum first, but they fall out as you rotate this drum).

Once the straight tubes are in place then the outer rows can be inserted by inserting the tube into one drum and pushing it in as far as the first bend, this then provides the clearance to allow the  tub to be swung into place and then you can slide the free end back into the other drum.

Once the tubes are in place you can commence expanding (in fact we expanded the straight tubes into place before inserting the bent ones. Drilling all the holes with a 12.1mm drill actually worked well and provided just enough clearance to allow assembly – any tighter and it would have been a real struggle.

How much expansion?

Before expanding we did the maths on how much expansion was needed. The idea is that firstly you expand the tube to take up the slack between the tube and the hole (12mm OD, 12.15mm hole) so this was 0.15mm on diameter, then you expand the tube by 5% of its wall thickness. So given a wall thickness of 0.7mm this meant expanding the tubes a further 0.07mm. So the resulting ID of the tube was 10.82mm.  We did this by test expanding one tube in stages and checking the diameter, and when it was right we measured the free-length of the mandrel still showing. This proved to be about 20mm, so we then made a 20mm collar for the mandrel which stopped the expanding at the right point.

This worked very well, the load on the drill driving the expander could be heard to change as the expander reached the collar, thus making it simple to know when each tube was tight, without a lot of squinting down the drums. It’s really a two man job, as one needs to hold the tube so that the required 3mm+ of the tube is extended into the drum, while the other drives the expander and “contraption”. A video of the process in action:

We actually fitted about three-quarters of the tubes that we could reach from one end and then turned the boiler around and did the tubes at the other end. It might have been better to work from both ends, as by the time we had finished the mud drums had been pushed out sideways in the casing by about 1mm – no big issue, but information we will use when expanding the other boilers.

One other issue was that the “contraption” and expander proved too long to be assembled inside the smaller mud drums. We solved this by shortening the “chuck” on the “contraption” and by shortening and regrinding the square drive on the expander.

Here are some pictures showing the process. About 14hrs work to expand the tubes for one boiler.

Interruptions

The next part of the job was to turn up the ends for the drum, and also the economiser and superheater ends.

I decided to start with the economiser and superheater ends. Having first drilled another 12.1mm hole in the centre of the blanks for the inner headers (to take one of the super heater tubes), this was initially a simple turning job with the blanks held on a mandrel pre-turned in a 3-jaw chuck – this lead to Interruption 1, the clutch on the Harrison started slipping when confronted with the loads of highspeed turning with the insert tooling I was using. So an hour of so cleaning and refilling the parts washer followed by getting all the oil off  the clutch plates solved the problem.

Then we needed to cut 70mm diameter 12mm deep recesses in the centre of each part – I started by boring one of these, but it was slow work, so I decided to change over to milling these – here two more interruptions intervened in progress. Firstly the Mill started a rather worrying clicking noise from the gearbox – trying to ignore it didn’t seem to work, so I concluded I needed to strip it and investigate, as any major failure would be catastrophic as there very few parts available if anything broke.

Rambaudi Mill Gearbox Servicing

Rambaudi Mill Gearbox Servicing

This was simple to do, but hard on the nerves  – more parts washing, lots of inspecting and new grease restored the machine to full (quiet) operation. I think small bits of dirt and swarf had migrated into the gears and spindle bearings, and the cleaning sorted things.

 

Lastly, I spent a while trying to resharpen a bunch of broken and worn milling cutters with pretty limited success – so I bit-the-bullet and purchased some new cutters, including a 16mm “ripping” cutter designed to rough out at higher speed – a good choice.

Recess Milling and PCD drilling

I decided to mount the header blanks on a rotary table and then mill the 70mm recesses with the ripping cutter, then remount the blanks on the table with a stud through the centre hole, located between a set of stops to drill the 12 M8 tapping holes using the DRO’s PCD program – nice and simple and accurate. More pics.

Shiny Things

While we await the 600+ cut and bent boiler tubes from the other members of the “Boiler Collective” beavering away in Sussex, we went back to the engine to try and close off the final list of “to do” jobs….

Cleading/Lagging/Cladding

I think Cleading is the official word for this, even though WordPress objects!

This is installed around the cylinder block to try to keep the heat in, raise the temperature of the block and reduce power-sapping condensation in the cylinders. (A thin film of condensate on the cylinder walls can apparently eat up to about 50% of the input steam in small (2″) cylinders according to this paper).

While on the face of it the Leak’s cleading can be quite simple, it still took two days of paper templates and careful nibbling of the 40thou stainless sheet I chose to use. This is thicker than often used, but I had discovered in using the same material on the 5″ Nigel Gresley I built, that is produces a far more robust job, and is much less prone to kinks and dents.

This was layed over a sheet of Kaowool blanket (with extra layers stuffed into the spaces) and secured with 2BA screws (temp ones shown in pictures) and I was quite pleased with the overall job.

This slideshow requires JavaScript.

Condenser Mounting

The mounting of the ancillaries onto the engine always seems to entail many hours of contemplation and procrastination (see next bit). On the Leak the condenser was not discussed in the original Model Engineer articles, and while the drawings are available the mounting is left to the builder’s discretion.

I opted not to undertake the building of the condenser. and instead managed to purchase a second-hand item (probably for a Stuart Turner 6A) from Simpson’s in Coniston at a very fair price. I eventually decided to build some large “shelf brackets” from some 3mm brass plate in the “stores”, and attached these to the flat faces on the rear of the bed and columns that were originally meant to hold the air/feed pump assemblies and cross-head guide. Having polished them with those fantastic York abrasive rubber blocks that Cromwell stock they looked quite posh!

The Condenser Shelf Brackets

The Condenser Shelf Brackets

Clearly the condenser itself still needs a coat of nice paint!

Displacement Activity

The next task is to find a place to mount the lubricator pump, and this engendered a lot of head scratching and eventually got diverted into some classic “displacement activity” (things you do to avoid doing the thing you need to do!).

So I polished the gauges I plan to use… more abrasive-block work and a nice result…

Shiny Gauge Set

Shiny Gauge Set

Onwards…..

A little lubrication

While we wait for the plasma cut boiler plates and housing to arrive I went back to a job that’s needed doing for a while on the engine; the Lubricator.

Approaches to lubrication

There are several approaches to lubricating a steam engine, from a hand-held oil can (tends to be a bit erratic, and you chop the end of the spout off in moving parts) thru oil wicks, to pumped lubrication. I felt that a pumped system was the way to go.

There are 11 bearings that need lubrication in the engine (3 main bearings, 2 big ends, 2 little ends/crossheads, and 4 eccentrics). Actually, there is cylinder lubrication as well, but we are going to deal with that via a separate displacement lubricator which injects oil into the incoming steam (a sort of 19-century “posi-lub”!

There seems to be two approaches to pumped lubrication, either a single pump producing a pressurised rail, and then a set of individual needle-valves or calibrated jets. Or individual pumps for each bearing. Memories of failed cam-shafts on Ford Pinto engines in the 70’s steered me towards the latter approach, so that is what we decided upon.

A V11 pump

jim ewing-style lubricator

A Jim Ewing-style Lubricator

So, the conclusion is a 11-pump lubricator. These are normally arranged as a “V” to reduce the overall length. I have previously built one to Jim Ewing’s design (see pic) which worked very well on the loco. My first plan was therefore to build a set of these and then drive them from a set of cams.

However. for reasons I can’t remember I thought I only needed 10 pumps so, when I drew these up in ViaCAD I drew them with 5 cams driving these in pairs.

FIrst plan - a V10 lubricator - in solid modler

FIrst plan – a V10 lubricator – in solid modler

First plan - a V10 lubricator

First plan – a V10 lubricator

Sprag Clutches

The cams are driven by a pair of “sprag clutches“, which are small needle roller bearings which only allow the shaft to turn in one direction. So, by holding one still in the oil tank and putting the drive arm on the other, one gets effectively a fine ratchet mechanism that will convert any to-and-fro motion into a rotating motion to drive the cams.

Pump Units

However, I concluded two things 1) making 10 (actually 11) of these pumps would take a while and 2) you could buy similar pump assemblies from Lubetec (these are Interlube AC pump units) ready made… So that was what I did – here are some pictures of the final lubricator with 11 of the LubTec pumps fitted – smaller capacity (red) ones for the eccentrics and larger (yellow) ones for the mains, big & little ends….

Onwards….

This slideshow requires JavaScript.

A fix for the Air Pump

So, following some communication with the steam boating forum we are all agreed that the Edwards Air Pump as drawn is missing  anything to hold the valve-plate in place, or seal its contact with the pump body. This means that:

  1. The whole valve tends to move up and down with the piston rod, (and I think this needs to be a “good” fit to prevent leaking round the pump-rod, so this is unavoidable).
  2. There is nothing to seal the lower valve plate (the one with the holes) where it sits on the ledge of the pump body…

So, my solution is to:

  1. fit a gasket under the valve plate
  2. make and fit a nylon block to hold the plate down – made 10 thou too long, so that the top cover provides some “squishing pressure”

As other members suggested this may help pump performance by removing “deadspace” (but it is beyond the valves so I am not sure if this is correct), and secondly it needed to be made in a way that ensured the outlet port is not cut-off if the block rotates; so, as can be seen in the pics below, I have made it with an exhaust annulus and internal ports to the valve chamber cut in the bottom…

I think this approach will also prevent the valve opening too far….. a test in the kitchen sink proves that it all works!

Here are some pics of the block and completed pump assembly.

air pump stuffing block in situ

air pump stuffing block in situ

air pump valve chest stuffing block

air pump valve chest stuffing block

air pump valve chest stuffing block

air pump valve chest stuffing block

Retirement Beckons!

A change of pace and circumstance

Well it seems I have not posted since November and the arrival of Befur’s trailer. Since then a lot has happened (so Happy Xmas, and Happy New Year)… I have had the fortune to be made redundant, and have (with Louise’s kind support) agreed to turn that into retirement – so from the end of February there will be no more working interruptions, and as I am only “on call” now, progress should be faster. So with the shingles finally subsiding, and hopefully the last of the winter colds and the left shoulder starting to free up,  there can be no more excuses – so 2015 looks bright indeed 🙂 Continue reading

The Impulse Valve (Simpling Valve)

I have puzzled over the drawings of the Impulse Valve for a year or more, and spoken to others who can make no sense of it.

Well finally last week while mulling the design over with a friend, he (I think) correctly fathomed how it is meant to be built and operate…

As drawn there appears to be a plunger in a tube which is operated by a press button. There appears to be no way that this would operate, as it would just admit HP steam to the chamber formed between this plunger and the end of the valve body….

The explanation is that this plunger is in fact a tube! Thus when depressed the steam is admitted to the end of the valve assembly, and then passes down the tube to the valve chest/cylinder. There are hints in the drawing that this is the game, but some of the views are incorrectly drawn which leads to the confusion – and actually I am not even sure it could be reliably constructed as drawn.

I think it would still be hard to make this valve steam tight, but in operation this might not be a practical problem…. Thanks to Neil Davis for figuring this out!

*Simpling or Impulse

In the ME words, Mr. Leak complains that many people incorrectly describe the Impulse Valve as a “Simpling Valve”, and he argues that this is wrong as it does not make the engine run as a simple (which is true) but just introduces a HP steam feed into the LP valve chamber to push the engine off HP TDC if it stops there.

He’s right in the description of what it does, but knowledgeable friends of mine tell me that within the road steam community (Traction Engines) these valves on compounds are always known as “Simpling Valves”… so maybe we can continue to use the term…

Setting the valve gear ….

Well as the videos below demonstrate we have the valve gear finished, and I managed to time it reasonably. There is some blowby on the HP, and that might need further investigation, but on the whole it’s OK.

I scratched my head a lot on how to set this gear, and while this might not be the “right way” and the setting is certainly not “perfect” – let me tell you how I did this….

Firstly we set the engine up so I could feed each cylinder from compressed air, with “ball-a-fix” valves to allow me to control the amount of flow, and which cylinder is fed. Also fitted a small pressure regulator to allow me to control the pressure fed to the engine.

This set up allowed me to turn the engine over by hand and feel when the air pressure was assisting or hindering this turning, and thereby determine if the gear was feeding the pressure at the right part of the stroke. Then one could simply say “is the gear ahead of the crank position?” (e.g. the air is being fed too soon, or cut off too soon), OR “is the gear behind the crank” (e.g. the air is being fed too late). It was then quite simple to slack off the allen screw locking the eccentric to the crank, use the key to hold the eccentric in place, and manually move the crank ahead or behind (forwards or backwards) to attempt to correct the error. I did this first in full-forward gear and then repeated the same process for the HP  cylinder, and then in full reverse (setting the relevant eccentrics).

Three or four iterations produced the results shown below…

Firstly running in (very) slow forwards

Secondly, a “video tour” providing a more detailed view of the various components?